Deep Learning for the Web
نویسندگان
چکیده
Deep learning is a machine learning technology that automatically extracts higher-level representations from raw data by stacking multiple layers of neuron-like units. The stacking allows for extracting representations of increasingly-complex features without time-consuming, offline feature engineering. Recent success of deep learning has shown that it outperforms state-of-the-art systems in image processing, voice recognition, web search, recommendation systems, etc [1]. A lot of industrial-scale big data processing systems including IBM Watson’s Jeopardy Contest 2011, Google Now, Facebook’s face recognition system, and the voice recognition systems by Google and Microsoft use deep learning [2][3][6]. Deep learning has a huge potential to improve the intelligence of the web and the web service systems by efficiently and effectively mining big data on the Web[4][5]. This tutorial provides the basics of deep learning as well as its key applications. We give the motivation and underlying ideas of deep learning and describe the architectures and learning algorithms for various deep learning models. We also cover applications of deep learning for image and video processing, natural language and text data analysis, social data analytics, and wearable IoT sensor data with an emphasis in the domain of Web systems. We will deliver the key insight and understanding of these techniques, using graphical illustrations and examples that could be important in analyzing a large amount of Web data. The tutorial is prepared to attract general audience at the WWW Conference, who are interested in machine learning and big data analysis for Web data. The tutorial consists of five parts. The first part presents the basics of neural networks, and their structures. Then we explain the training algorithm via backpropagation, which is a common method of training artificial neural networks including deep neural networks. We will emphasize how each of these concepts can be used in various Web data analysis. In the second part of the tutorial, we describe the learning algorithms for deep neural networks and related ideas, such as contrastive divergence, wake-sleep algorithms, and Monte Carlo simulation. We then describe various kinds of deep architectures, including stacked autoencoders, deep belief networks [7], convolutional neural networks [8], and deep hypernetworks [9]. In the third part, we present more details of the recursive neural networks, which can learn structured tree outputs as well as vector representations for phrases and sentences. We first show how training the recursive neural network can be achieved by a modified version of the backpropagation algorithm introduced before. These modifications allow the algorithm to work on tree structures. Then we will present its applications to sentence analysis including POS tagging, and sentiment analysis. The fourth part discusses the neural networks used to generate word embeddings, such as Word2Vec [10], DSSM for deep semantic similarity [11], and object detection in images [12], such as GoogLeNet, and AlexNet. We will explain in detail the applications of these deep learning techniques in the analysis of various social network data. By this point, the audience should have a clear understanding of how to build a deep learning system for word, sentence and document level tasks. The fifth part of the tutorial will cover other application examples of deep learning. These include object segmentation and action recognition from videos [9], web data analytics, and wearable/IoT sensor data modeling for smart services.
منابع مشابه
Anomaly-based Web Attack Detection: The Application of Deep Neural Network Seq2Seq With Attention Mechanism
Today, the use of the Internet and Internet sites has been an integrated part of the people’s lives, and most activities and important data are in the Internet websites. Thus, attempts to intrude into these websites have grown exponentially. Intrusion detection systems (IDS) of web attacks are an approach to protect users. But, these systems are suffering from such drawbacks as low accuracy in ...
متن کاملEfficient Method Based on Combination of Deep Learning Models for Sentiment Analysis of Text
People's opinions about a specific concept are considered as one of the most important textual data that are available on the web. However, finding and monitoring web pages containing these comments and extracting valuable information from them is very difficult. In this regard, developing automatic sentiment analysis systems that can extract opinions and express their intellectual process has ...
متن کاملSimilarity measurement for describe user images in social media
Online social networks like Instagram are places for communication. Also, these media produce rich metadata which are useful for further analysis in many fields including health and cognitive science. Many researchers are using these metadata like hashtags, images, etc. to detect patterns of user activities. However, there are several serious ambiguities like how much reliable are these informa...
متن کاملA Hybrid Optimization Algorithm for Learning Deep Models
Deep learning is one of the subsets of machine learning that is widely used in Artificial Intelligence (AI) field such as natural language processing and machine vision. The learning algorithms require optimization in multiple aspects. Generally, model-based inferences need to solve an optimized problem. In deep learning, the most important problem that can be solved by optimization is neural n...
متن کاملThe Effect of Web-Integrated Instruction and Feedback on Self-Regulated Learning Ability of Iranian EFL Learners
Abstract The present study intended, firstly, to investigate the effect of web-integrated instruction on self-regulated learning ability in EFL writing, and secondly, to compare and contrast the effects of paper-based feedback and web-assisted feedback on the self-regulated learning ability. To this end, a quasi-experimental design was applied for both cases. In line with the first objective, ...
متن کاملA Hybrid Optimization Algorithm for Learning Deep Models
Deep learning is one of the subsets of machine learning that is widely used in Artificial Intelligence (AI) field such as natural language processing and machine vision. The learning algorithms require optimization in multiple aspects. Generally, model-based inferences need to solve an optimized problem. In deep learning, the most important problem that can be solved by optimization is neural n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015